
!
AD-A245 0801ll ill 11111111111111 Ill 1111

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
Ft. ECTE ~RD3

JAN 30 19921

D
THESIS
A VLSI DESIGN OF A

RADIX-4 FLOATING POINT
FFT BUTTERFLY

by

Michael Lee Zimmer

December, 1991

Thesis Advisor: Herschel H. Loomis, Jr.

Approved for public release; distribution is unlimited

92- 02383



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution is unlimited.

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate School

EC

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9- PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
Program Element No Project No Task No Work unit Accession

Number

11. TITLE (Include Security Classification)

A VLSI Design of a Radiz-4 Floating Point FFT Buierfly

12. PERSONAL AUTHOR(S) ZIMMER, Michael L.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT
Master's Thesis From To December 1991 126
16. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
17. COSATI CODES 18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Digital Arithmetic; FF1 Butterfly Design; Cyclic Spectrum Analysis; Genesil Silicon
Compiler

19. ABSTRACT (continue on reverse if necessary and identify by block number)

Cyclic Spectrum Analysis is used to exploit the cyclostationary properties of signals and systems. Implementing such a system will
require high speed arithmetic processing. Investigations into high speed arithmetic and FFT design are conducted. Integrated circuts of
a 45 MHz floating point multiplier, adder, and rate-1/4 radix-4 FFT butterfly implemented with a 20-bit word size, are presented using the
Genesil Silicon Compiler.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
& UNCLASSIFIEDiUNLIMIIED 13SAME ASRePORt OtIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22c OFFICE SYMBOL
.OOM IS, Herschel I1., Jr. (408) 646-3124 EC/Lm

DD FORM 1473, 84 MAR 83 APR edition may be u.ed until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

i



Approved for public release; distribution is unlimited.

A VLSI DESIGN OF A RADIX-4 FLOATING POINT FFT BUTTERFLY

by

Michael Lee Zimmer
Lieutenant, United States Navy

B.S., Kearney State College, 1984

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1991

Author: 1

Approved by: Z
Herschel H. Loomis, Jr., Thesi visor

Ra'y~d F. Berlnstein, Jr., Secoxd Reader

Michael A. Morgan, Chairmdn
Department of Electrical and Computer Engineering

ii



ABSTRACT

Cyclic Spectrum Analysis is used to exploit the

cyclostationary properties of signals and systems.

Implementing such a system will require high speed arithmetic

processing. Investigations into high speed arithmetic and FFT

design are conducted. Integrated circuits of a 45 MHz

floating point multiplier, adder, and rate-l/4 radix-4 FFT

butterfly, implemented with a 20-bit word size, are presented

using the Genesil Silicon Compiler.
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I. INTRODUCTION

A. Cyclic Spectrum Analysis

Cyclic Spectrum Analysis is used to investigate

cyclostationary properties of signals and systems. This

technique generalizes conventional spectral analysis to

include periodic time variant signals and systems. Cyclic

spectrum analysis is well suited for signal detection,

modulation recognition, signal parameter estimation and the

design of communications systems. Applications to spaceborne

systems are possible if the integrated circuit (IC) is

radiation hardened. (Ref. 1]

This method of spectral analysis is concerned with signals

that contain more subtle types of periodicity that do not give

rise to spectral lines, but which can be converted into

spectral lines with a nonlinear time-invariant transformation

of the signal. The spectral correlation density function for

a discrete real-valued signal x(n) is defined as:

S* (k) = R (k) e -27 :k,
k=-oo

which is the Discrete Fourier Transform of the cyclic

correlation function:

1



NRG=-lim 1NI n N x (n+k) e -1 "K( " k) ] [x(n) e' 8 ]"

where a is the cyclic frequency.

A particularly useful application of cyclic spectral

analysis is the investigation of modulation techniques,

especially spread spectrum. Figure 1 [Ref. 2 p. 28] is a plot

of the cyclic spectrum of a bipolar phase-shift keyed (BPSK)

signal. The magnitude of the cyclic spectrum is plotted as

the height above the a - f plane, where f is the spectral

frequency and a is the cyclic frequency. The power spectral

density function is represented on the a = 0 line.

The computational complexity of cyclic spectrum analysis,

which far exceeds that of conventional spectrum analysis,

limits its use as a signal and systems analysis tool. The

operations involved in the algorithms are common to most

signal processing algorithms: Fourier transformations,

convolution, and product modulations [Ref. 1]. In this

application, the high number of operations required are too

great for general purpose computers. Computing the cyclic

spectrum algorithms can best be accomplished by using

Application Specific Integrated Circuit Design (ASIC) in Very

Large Scale Integrated Circuits (VLSI).

2
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Figure 1. Cyclic Spectrum for a BPSK Signal

B. GENESIL SILICON COMPILER (GSC)

One method of ASIC design is silicon compilation. A

silicon compiler is an automatic translation tool that

converts a behavioral description to mask level description.

In other words, a silicon compiler allows an engineer who is

not expert in IC design, to design an IC. Because of low

design costs, silicon compilation is also ideal to implement

an IC design that will not have a large production quantity.

A major problem with silicon compilers is low component

density which translates to large silicon area and slower

clock speed. To alleviate this problem, new versions of

silicon compilers are providing more capability in automatic

floorplanning and routing.

3



The GSC provides the user with the capability of designing

VLSI circuits from high level system description to

manufacture tapeout by producing the IC circuits from

architectural descriptions. Huber (Ref. 3:p. 88] states that

there are two significant limitations to the GSC Version 7.1

which he used: component density and vertical feedthrough.

The most significant is the inability to achieve high

component density. In Huber's parallel multiplier design

(Ref. 3:pp. 86-88], an attempt was made to establish vertical

feedthrough between adjacent multiplier levels with no

success. Since that time GSC Version 8.0 and the Logic-

Compiler (AutoLogic) have been installed. This software

offers more capabilities to overcome these limitations. The

Logic-Compiler performs synthesis and optimization on an input

netlist representation of a design to produce an output design

optimized for area and performance. Appendix A gives a more

complete description of Genesil 8.0 and the Logic-Compiler.

C. THESIS GOALS

The motivation for this thesis is to implement a cyclic

spectrum analyzer (CSA) using ASIC VLSI design. The

fundamental building blocks for the CSA are the floating point

multiplier, adder, and the Fast Fourier Transform (FFT)

butterfly. The primary goal of this thesis is to design these

processing elements: a floating point multiplier, a floating

point adder, and a rate-l/4 radix-4 complex floating point FFT

4



butterfly using a 20-bit word that can operate at a minimum

rate of 40 MHz. To achieve this goal, investigation of high

speed arithmetic and the capabilities of Genesil and Logic-

Compiler is required. Chapter 2 presents an indepth

investigation of high speed arithmetic design.

5



II. HIGH SPEED DIGITAL ARITHMETIC

A. NUMBER SYSTEMS

1. Introduction

Representation of numbers within a digital system is

accomplished with a group of bits. The number of bits used to

represent a number determines the total number of

representable values. For each additional bit added to the

representation, the number of representable values doubles.

For example, there are 2 N representable values in a N bit

binary number. What these values represent depend on the

number system chosen by the designer. Integer representations

include ones' complement, two's complement, and excess code.

Rational number representations utilize the integer number

systems to implement fixed point and floating point

representations of fractional numbers.

2. Integer Number Systems

a. Unsigned

The simplest integer system is the unsigned system.

The binary numbers just represent unsigned numbers. The range

of representable numbers is from 0 to 2 "1, where N is the

number of bits in the representation. Each bit position k has

associated with it a value of 2k and the value represented by

the collection of bits is described as:

6



N-I
VUSIGNE = bi x 2'.

Where b, is the one or zero in position i. Unsigned numbers

are easy to manipulate but they can only represent positive

integers. [Ref. 4:pp. 31-32]

b. Two's Complement

The most common method to represent signed numbers

is the two's complement number system. The range of

representable numbers in a N-bit word are from -2N-I to 2 N1 - 1.

Negative numbers are represented by subtracting the unsigned

value of the number from 2N . The value for any N bit two's

complement number is given by:

N-2
V2/ =-bN-1 x 2N- 1 + E b i x 2i.

i=0

For example, let N = 4 and the number to represent be -7 =

-0111 in binary. The number is represented in two's

complement as 24 - 7 which is 1000 - 0111 = 1001 in binary.

[Ref. 5:pp. 190-193]

Although the most significant bit is not defined as

the sign bit, it still is considered as such. If the most

significant bit is set, the value will be negative. This is

7



because the most significant bit carries more weight than all

of the other bits added together.

The reason that two's complement is such a popular

system is its circular nature. This is illustrated in Figure

2 [Ref 5:p. 192]. The primary drawback to using two's

complement number system is that it requires a relatively

complicated conversion from signed magnitude to two's

complement or vice versa. Two's complement multiplication

also requires more hardware than unsigned or magnitude

multiplication.

c. Ones' Complement

Another number representation, ones' complement,

requires a much simpler conversion procedure from signed

magnitude. The ones' complement conversion requires only that

each bit of the signed magnitude binary number be inverted for

negative numbers. The ones' complement representation of a

binary number N is formulated by N,. = (2" - 1) - N, where n

= the number of bits and N = the unsigned number to be

inverted. As shown in Figure 3 [Ref. 5:p. 194], ones'

complement also has a circular nature except that it has two

representations of zero; 0000 and 1111. Ones' complement

addition develops a special situation when a carry is

generated. Since there are two zeros in the number system,

the sum will be in error by one from the correct answer if a

carry is generated. This is corrected by the "end-around"

8
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1011 0001

-7 7
-8

Figure 2. Two's Complement Representation

0
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1101 0100

-4 1

-67
-7

Figure 3. Ones' Complement Representation
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carry. The "end-around" carry adds one to the sum if a carry

is generated in the original addition. Using this number

system requires as much or more hardware to implement

arithmetic operations as the two's complement system.

d. Excess Code

Excess code number representation utilizes an

excess number that is added to the value of the number to be

represented. If V is the number to be represented and E the

excess then the excess code number S is:

S = V + E.

For example, the 4-bit excess 8 code for 3 is 10112 and the

code for -3 is 01012. Zero is represented by 1000 in binary.

Excess code can be converted to two's complement by inverting

the most significant bit of the excess code number. The most

prevalent use of excess code is to store exponents in floating

point numbers.

3. Rational Numbers

a. Fixed Point

Fixed point rational number representation is much

like integer representation except that the radix point is not

directly to the right of the least significant bit of the

number. The placement of the radix point is established

purely to satisfy the requirements cf the user or designer for

fractional or integer numbers. If the information to be

represented contains fractional values, then assumption of a

10



radix point establishes a fixed point system that is so

adjusted that it can cover the necessary range [Ref. 4:p. 36).

Addition in fixed point systems is done exactly as for integer

operations. For multiplication, care must be taken to assure

that the radix point is in the correct place and that the

correct bits are preserved after an operation. The value of

a two's complement fixed point system is:

N-2
FIXED POINT 

= -bN-1 x 2 N-p-1 + E b, x 2i - P .
i=0

Where p is the position of the radix point; the number of bit

positions to the left of the least significant bit where the

assumed radix point is found. If p = 0, then the fixed point

system would be the same as the integer one. This enables the

designer to determine the smallest value required to meet the

needs of the system and select the number system accordingly.

b. Floating Point

(1) Format. Many applications require the ability

to represent information of a much greater or smaller

magnitude than possible with fixed point systems. The use of

scientific notation solves this problem in the decimal number

system. A similar system is used to represent large and small

numbers in digital arithmetic systems. This number system is

called the floating point number system. This type of number

system does not expand the quantity of representable values,

Ii



it modifies the way in which the values are interpreted.

[Ref. 4:p. 42]

To specify a floating point number, seven

different pieces of information are required: base of the

system, sign, magnitude, and base of the mantissa, and the

sign, magnitude, and base of the exponent. [Ref. 4:p. 42] In

most cases, the base of a digital number system, the base of

the mantissa, and the base of the exponent is 2. A floating

point number, as described above, will have the following

format:

(Sign)Mantissa x BaseExPN m'T .

The sign bit denotes the sign of the floating point number,

Usually represented as a 0 for positive and a 1 for negative.

The mantissa is used to identify the significant bits of a

number value. The base denotes the radix of the system,

usually 2. This value is not stored in a digital system but

is part of the definition of the number system. The location

of the value of a floating point number on the real number

line is determined by the exponent.

(2) Mantissa. The number of bits in the mantissa

determines the accuracy the floating point numbers

represented. The format of the mantissa usually includes a

"hidden" bit when representing normalized numbers. The use of

a "hidden" bit increases the number of representable mantissas

by 2. To compute the range of the number system, the minimum

12



and maximum allowable values for the mantissa must be

determined.

The minimum and maximum value of the mantissa

depend on the use of a "hidden" bit and the acceptance of

denormalized numbers. Normalized numbers are floating point

numbers that are forced to have a 1 in the most significant

bit position of the normalized mantissa. Using a "hidden" bit

for the most significant bit is ideal since it will always be

1. In the IEEE standard [Ref. 6] for binary floating point

numbers and in most other systems, the radix point is located

to the right of this "hidden" bit. If the system allowed

denormalized numbers, the "hidden" bit could be 0, thus

allowing a greater range of representable numbers. For

example, a 4 bit normalized mantissa with a "hidden" bit has

a minimum value of 1.0000 and a maximum value of 1.1111. The

same system, except that it allows denormalized numbers, has

a minimum value of 0.0001 and a maximum value of 1.1111. It

is possible to use any integer number system for the mantissa

including the systems discussed in para. 2. The most common

method is signed magnitude, which is the IEEE standard [Ref.

6] for floating point mantissas.

(3) Exponent. The exponent along with the radix of

the system determines the range of the floating point system.

The exponent also needs to have a sign to represent floating

point values less than the smallest representable value of the

13



mantissa. In a normalized base 2 floating point number

system, the smallest mantissa is one. To represent fractional

values in this system, the exponent must be negative. For

example, .5 is represented by a 1 in the mantissa and a -1 in

the exponent:

1 x 2-1 = .5

Like the mantissa, any integer number system would be

sufficient for the number representation in the exponent, but

the most commonly used method is excess code. The IEEE

standard [Ref. 6] uses excess code.

Zero representation in a normalized system is

done in the exponent. Usually the smallest representable

value in the exponent is reserved to indicate a true zero

value. This must be done because the "hidden" bit is always

a one, which means the mantissa is always nonzero. In systems

which allow denormalized numbers, there is a zero in the

"hidden" bit when a denormalized number is represented,

usually denoted by all zeros in the exponent. In this case,

true zero is represented by the smallest value in the exponent

and all zeros in the mantissa.

B. HIGH SPEED INTEGER ADDERS

1. Introduction

The addition function in an arithmetic computation

system is the most fundamental of add, subtract, multiply, and

14



divide functions. All of these operations can be implemented

by some combination of the add function. The full adder cell

is the fundamental building block in the ripple-carry and

carry-save adders. The two other high speed adders to be

discussed, conditional sum and carry-lookahead, are

synchronous and do not require the use of the full adder cell.

2. The Full Adder

The function of a full adder is to add two bits and

the carry from the next less significant bit to produce a sum

and a carry out to next more significant bit. A functional

diagram is shown in Figure 4(a) [Ref. 4:p. 71]. The truth

table for the function is shown in Figure 4(b). As shown, the

three input bits, A, B,, and C ,, are summed to produce two

bits, F1 , the sum, which has the same significance as the input

bits, and Co.,, which is one bit more significant. Figure 4(c)

show the Karnaugh maps for C., and F8 with the resulting sum of

products Boolean equations. These equations are implemented

with random logic as shown in Figure 4(d). [Ref. 7:pp. 70-71]

3. Two Operand Adders

a. Ripple-Carry Adder

The ripple-carry adder is just a group of full

adders cascaded to the width of the desired word length. The

Co, of one bit is wired to the C, of the next significant bit.

This is not a high speed adder design because it requires two
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gate delays for every bit in the width of the numbers to be

added. For example, in the 8 bit adder shown in Figure 5, the

delay to final C, is 16 gate delays. This adder can be made

synchronous by the insertion of appropriately placed f lip-

flops.

b. Conditional Sum Adder

In the case of ripple-carry adder, the carry must

propagate through the length of the word. This is an

unacceptable delay for high speed arithmetic operations. The

conditional sum adder overcomes this problem by generating

distant carriers and using these carriers to select the true

sum outputs from two simultaneously generated conditional sums

under different carry input conditions. [Ref. 7:p. 78]

Conditional sum adders offer significant speed gains over

ripple-carry adders by utilizing logic gates and multiplexers

with small fan in and fan out. The delay is proportional to

log 2N instead of N as in the ripple-carry case. The major

disadvantage is a large increase in area required for

hardware.

A 7-bit two-operand adder using the conditional sum

algorithm is illustrated in Figure 6 [Ref. 7:p. 79]. For the

example, the inputs are A = 11011012 and B = 01101102 with no

external carry in. S,'s are the conditional sums within the

adder. Subscripts indicate bit position and superscripts

indicate the assumption of a carry or no carry into the lowest
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Figure 5. S-bit Ripple Carry Adder

order bit position of a section. There are rn/kl sections in

So(k) or S,(k) for an n-bit addition. The number of steps (t)

required is given by:

t = [log2n].

Where n is the number of bits in the adder.

The adder represented in Figure 6 has n = 7.

Therefore, t = flog2 71 = 3 steps are required to complete the

addition. Step one has a carry and a no carry into each bit

position, so there are 7 sections. The section size doubles

for each successive step with a carry and no carry into each

least significant bit position of each section. The arrows in

Figure 6 show, for the example inputs, how the carries are
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Figure 6. 7-bit Conditional Sum Adder Algorithm
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generated between sections and how they are eventually used to

select the true sum and carry outputs. [Ref. 7:pp. 78-80]

The conditional sum adder can be implemented with

2-input multiplexers, and gates, or gates, and inverters. The

initial conditional sums and carries can be generated in

parallel using the random logic gates indicated above. If the

conditional sum and carry of ith bit position with no carry in

are denoted by S° and C,,0 respectively, then the Boolean

equations for these are:

S =A.EDB. A1 B1 +A1jB1 ;

i+1 = Ai

Similarly for the conditional sum and carry with a carry in

(SiI and Ci+ 1):

S1 = AO = AiBI + A1B1;

C+1 =A.+ B.i

Each input bit position must generate these sums and carries.

The carries will eventually be used to select the final sum

and carry out. The Conditional Cell (CC) in Figure 7 [Ref.

7:p. 81] generates these conditional sums and carries. Figure

7 also illustrates the hardware required to implement the 7-
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bit adder described in Figure 6. The first stage of

multiplexers selects the Oth bit of the final sum. The second

level selects the st and 2nd bits and the final multiplexer

outputseough crres the 6th bits and the carry out of the

final sum.

c. Carry-Lookahead Adder

Another adder that overcomes the carry propagate

problem is the carry-lookahead adder. Carry ripple is

eliminated by using additional random logic to simultaneously

generate the carries entering all of the bit positions. This

results in a constant add time regardless of the length of the

adder.
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Let A = A,-,...A,,A0 and B = B,.,...B I,B0 be the

inputs to a n-bit carry-lookahead adder. S, and C, are the sum

and carry outputs of the ith bit position of the adder. Two

functions must be generated for each bit position to implement

the carry-lookahead algorithm; carry generate (G1) and carry

propagate (P,). The Boolean equations are:

Gi Ai • Bi;

Pi =AiEBi.

The ith carry generate function produces a binary 1 if a carry

is generated at the ith bit position independent of the less

significant sums and carries. The ith carry propagate

function produces a 1 if a carry is generated by a carry in

from the less significant bits. Although the obvious

implementation for generating the P's and Gi's would be to use

AND gates and exclusive OR gates, a NAND gate implementation

is possible and probably more economical in area usage.

Figure 8 illustrates the NAND gate implementation of a n-bit

wide carry generate and carry propagate unit for a carry-

lookahead adder. The following relations result after

substituting P, and G into the sum and carry equations for a

full adder cell:
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Figure S. n-bit Carry Generate/Propagate Unit

S i = (Aji&Bi) (Ci. I

= PjEci- ;

Ci = A i ' B j + (A.,DB,) "C,-

= Gi+Pi.Ci-. .

These equations show that the sun and carry of every bit

position is dependent only on the simultaneously generated Pi's

and G 's and the carry in from the next less significant bit

position. To make this adder truly parallel and high speed

these carries must be generated in parallel also. To
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accomplish this the equation for C, can be used recursively as

follows:

C0 = Go + C-1 P0 ;

C1 = C1 + C0 P1

= G, + GOP, + C_1 P0 P;

C1-1 = Gn-1 + G +-2Pn-1 * + C-1POP 1 ... Pn-"

Where C, is the external carry in of the adder. These

equations can be realized with random logic. Figure 9 [Ref.

7:p. 86] is the logic circuit diagram of a 4-bit carry

lookahead unit. Obviously, the size of the carry lookahead

unit is limited by the fan-in of the random logic being used.

The final sum is generated with an array of XOR

gates as shown in Figure 10 [Ref. 7:p. 85] which is called the

summation unit. Figure 11 [Ref. 7:p. 89] illustrates how the

carry generate/propagate unit, the carry lookahead unit, and

the summation unit are combined together to form an 8-bit

carry lookahead adder.

Fan-in limitations of the random logic used to

build a carry lookahead unit is a severe constraint that must

be solved. It can be solved by the using the block carry

lookahead unit. This unit generates a block propagate (P') if

a carry into the block would force a carry out of the block.
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Figure 11. 8-bit Carry Lookahead Adder

The block also generates a block generate (G') if there is a

carry that originated within the block. [Ref. 7:pp. 87-88)

Figure 12 [Ref. 7 :p. 87] is logic circuit diagram of a 4-bit

block carry lookahead unit. The equations for P and G" are as

follows:

= PP 1P2 P3 ;

G" = G3 + G2 P3 + G1P2 P3 + GoP 1 P2 P3 .

These blocks can be combined together to create a carry

lookahead adder of any size. Figure 13 [Ref. 7:p. 90] is a

32-bit carry lookahead adder using 4-bit and 8-bit block carry

lookahead units.
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Figure 12. 4-bit Block Carry Lookahead Unit

4. Multioperand Adders

a. Introduction

If there is a requirement to add more than two

numbers together, such as summing partial products in a

multiplier, then the number of two operand adders must

increase. For N inputs there must be N-1 two operand adders.

For large number N, the adder will be intolerably slow and

large. The solution is to build multioperand adders from

random logic. The carry-save adder is one example of a

multioperand adder.
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Figure 13. 32-1it Carry Lookahead Adder

b. Carry-Save Adder

The carry-save adder is constructed from full adder

cells like the carry ripple. The difference is only that in

the carry-save adder the carry out from each cell is not

propagated to the carry in of the next significant cell. This

carry out is saved for the next level of adders. This leaves

three inputs into the adder cell of equal precedence. The cell

produces one output of the same significance and one output of

one bit greater significance. Utilizing the adder cell in

this way is called row reduction. The full adder is a 3-to-2

row reduction unit. Figure 14 [Ref. 6:p. 101] illustrates
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how carry-save adders (CSA) can be configured to produce row

reduction units with a various number of inputs. Since the

carry-save adder does not solve the problem of or complete the

carry ripple, a two operand adder must be used in the final

stage of adders to complete the sum.

C. HIGH SPEED INTEGER MULTIPLIERS

1. Standard Multipliers

a. Introduction

An integer multiply in the binary number system is

much like that done in the decimal number system. This

procedure is illustrated in Figure 15 (Ref. 4:p. 83). PPo -

PP4 are called the partial product rows. Each partial product
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is generated by a binary multiply: the and function. The

final product is the sum of the properly aligned partial

product rows. This indicates the requirement of a binary

product module (AND) and a summing module to complete the

multiply function.

Standard multipliers are based on the add-shift

method for multiplication. Multipliers of this type include

the standard add-shift, multiple shift, multiple shift with

overlapped scanning, and the Booth multiplier. The Booth

multiplier, a variant of the add-shift method, uses string

recoding.

b. Standard Add-Shift Multiplier

The simplest method for doing the multiply is the

standard add-shift method. Figure 16 [Ref. 4:p. 84]

illustrates one implementation of this method using standard

integrated circuits (IC). This 8 x 8 multiplier has 2 8-bit

inputs and 1 16-bit output. The multiplier is initially

loaded into the shift register to provide one bit into the and

gates with all of the multiplicand to. generate the first row

of partial products. This row is then added with the sum in

the output register (initially zero). This is called the

accumulation sum. An 8-bit adder is used because the partial

product addition is done from the least significant partial

product to the most significant partial product. The output
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Figure 15. S-bit Multiply

of the adder is then put into the 9 most significant bits of

the output registers. For the next iteration, the multiplier

is shifted one right and outputs the next significant bit is

input to the AND gates with the multiplicand. The result from

the previous adder iteration is shifted by hard wiring the

accumulation sum to shift one bit to the right every

iteration. This shift is necessary to line up the

accumulation sum with the appropriate bit positions in the

partial product. To complete the multiply, 8 iterations (8

PROD-CLK cycles) must be done. For a N x N bit multiply

there must be N iterations. This is much too slow for high

speed multiplication.

31



aA4M

FiI aJmI .

Figure 16. 8 x 8 Multiplier

c. Multiple-Shift Multiplier

The slowness of the add-shift method can be

alleviated by using more than one multiplier bit per cycle.

To accomplish this requires multiple bit scanning and multiple

shifts after each addition. For example, the total number of

add-shift cycles can be reduced by half, if two multiplier

bits are examined at a time. The hardware required is greater

than the one bit scanning method.

When scanning two bits at a time there are four

possible actions instead of just add the multiplicand or add

zero. This decision was made with AND gates. Table 1 shows

the four situations with the correct values to added to the
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partial product. The A represents the multiplicand. To

generate 2A the multiplicand A is asynchronously shifted one

bit position to the right. The decision to add 2A and/or A is

also done with AND gates. Figure 17 [Ref. 7:p. 142]

illustrates the configuration for two bit scanning. Since

there will be 3 operands per add: 2A, A, and the previous

partial product, a carry-save adder is utilized. The carry

propagate adder (carry-ripple) in Figure 17 can be replaced

with a faster two operand adder to increase cycle frequency.

This multiplier is much the same as the standard

add shift multiplier except that it requires shifting of more

than one bit and a multioperand adder. The cycles per

multiply is greatly reduced with a small increase in cycle

period. As the scan width increases, the required clock

cycles decrease. But the hardware complexity and the cycle

period will increase as scan width increases.

d. Multiple Shift Multiplier with overlapped scanning

In the nonoverlapped bit scanning method each

multiplier bit generates one multiple of the multiplicand to

be added to the partial product [Ref. 7:p. 143]. When the

scan width gets large then the number of multiplicand

multiples to be added gets large which decreases cycle

frequency. The overlapped scanning method attempts to reduce

the number of multiples to be added there fore reducing adder
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Table I. Multiplicand Multiples to be added to the
Partial Product after Scanning 2 Multiplier Bits

Multiplier Multiplier Multiples

Bit 1 Bit 0 to be Added

0 0 0

0 1 A

1 0 2A

1 1 A+2A

complexity and cycle period. The number of multiplicand

multiples can be reduced by half using the overlapped scanning

method over the standard multiple-shift method.

The basis of this method is that execution time can

be reduced (cycle period) by shifting across a string of zeros

in the multiplier [Ref. 7:p 143]. The following describes a

string of k consecutive l's in the multiplier:

Column Position - ... , i+k, i+k-1, i+k-2, ... , i, i-I, ... ;

Bit Content - ... , 0 , 1 , 1 , 1.., 1, 0 , ...

By the string property:

2 i.k - 2i = 2 ik-1 + 2 j k
-2 + ...2i+1 + 2i;

the k consecutive ones can be replaced by the following

string:
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Old
Partial

Product 2A4 AMo Bs

New partial Product

co,,"S, .... Sis$Q

*Figure 17. adder Unit for Tvo Bit Scanning
Multiplier

Column Positon - .. , i+k+1, i+k, i+k-1, ... , i+1, i1, i-i,.

Bit Content - ... , 0 , , 0,..., 0, ,0,

(Ref. 7:p. 143]

The string states that the string of k ones can be

replaced by a 1 in the next more significant bit position

subtracted by a 1 in the next less significant bit from the

string. The 1 overbar signifies this subtraction. This is

essentially replacing k consecutive adds with one add at the

beginning and one add at the end of the string [Ref. 7:p.

143]. For long strings of ones this is a considerable saving.

Implementing this method in a 2-bit scan width + the overlap
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bit will require that additior. and subtraction is possible

during each cycle.

e. Booth's Multiplier

The Booth multiplier is a recoding algorithm that

is also based on the string property. This method is similar

to the overlapped scanning algorithm except it is used for

two's complement multiplication. Let B = B4,B3,B2,B,,Bo, so the

value of B is:

B2 ,, = B 4 x (-16) + B3 x 8 + B2 x 4 + B, x 2 + B x 1.

The above equation can be manipulated into:

B2 ,= -16x (B4-B3) -8x (B3-B2) -4x (B2-BI) -2x (B1-Bo) -Bo

The values in the parentheses in the last equation can have

the values 1, 0 ,-1. The shift algorithm -or this

multiplication is exactly the same as the 2 bit multiple-shift

multiplier. The difference is that the possible actions to

take are add, subtract, or do nothing as opposed to add or do

nothing in the multiple-shift multiplier. (Ref. 4:pp. 90-91]

f. Summary

There are many multiplier designs that would fit in

the "shift and add" standard category that have not been

discussed in this section. All of these designs can be

optimized to increase speed and decrease the number of cycles.

But if they are characterized as standard then they will be

recursive. This implies multicycle completion and the
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multiplier is not easily pipelined for high speed operations.

These multipliers cannot or at least should not be used for

high speed digital arithmetic. The next section discusses

multiplier designs that are more appropriate for high speed

arithmetic.

2. Cellular Array Multipliers

a. Standard Parallel Multiplier

(1) Introduction. The parallel multiplier is based

on the observation that partial products in the multiplier can

be computed in parallel [Ref. 8: p. 344]. The partial

products in the standard add-shift multiplier generated its

partial products with AND gates one row per clock cycle. For

a N x N multiply there are N2 partial products. To accomplish

this there must be N2 AND gates. To sum all of the partial

products the multiplier requires N(N-2) full adder cells and

N half adder cells. Figure 15 illustrates the partial

products to be summed together for a 5 x 5 multiply. Since

the partial products are generated in parallel the primary

delay in the computation is due to adding the partial products

to get the final product.

(2) Parallel Multiplier Cell. Figure 18 [Ref. 8:p.

345) is an illustration of the parallel multiplier cell. It

consists of an AND gate and a full adder. This cell is the

only part that is required to build a parallel multiplier.
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Figure 18. Parallel Multiplier Cell

(3) Parallel Multiplier. The parallel multiplier

is an array of parallel multiplier cells arranged to output

the unsigned product of two unsigned numbers. Figure 19(a)

[Ref. 8:p. 345) is the multiplier with the partial products on

each cell. Figure 19(b) has the same arrangement as in Figure

19(a) but in a square array. The latter arrangement is more

convenient in VLSI to implement in hardware. It also lends

itself to pipelining the multiplier into stages to increase

clock frequency.
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Figure 19. 4 x 4 Parallel Multiplier

b. Wallace Tree

The Wallace tree is a solution for reducing the

delays due to summing the partial products in a multiplier.

It takes inputs of the same significance and outputs the sum

of these inputs. For example, the full adder cell is a 3

input, two output Wallace tree. Any size Wallace tree can be

built from the 3 to 2 Wallace tree. Figure 20 [Ref. 7:p. 166]

illustrates the full adder cell as a 3 to 2 Wallace tree and

a 7 to 3 Wallace tree built from full adder cells. The

Wallace tree is nothing more than a multioperand bit-slice

adder.
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Figure 20. Wallace Trees

c. Summary

There are many other array multipliers in use but

their goal is much the same, reduce the partial product adding

delay. Regardless of method, the tradeoff is coldly clear, if

the design must be fast then the hardware complexity must be

high. More hardware translates to higher cost. Although the

cellular array multipliers are faster, they are also much more

expensive than the serial add-shift multipliers.

D. FLOATING POINT ARITHMETIC

1. Introduction

Using a floating point number system makes arithmetic

operations much more complex. For the most part the
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discussion is for operations with normalized numbers, although

design differences for denormalized number systems are

discussed. Multiplication is addressed first because it is

much simpler than addition.

Other assumptions to made about the floating point

number system are: 1) Mantissa is in signed magnitude;

2) Exponent is in excess code; 3) The floating point number

system is in base 2.

2. Floating Point Multiplication

The product of two floating point numbers A and B

looks like:

A x B =MA x 2 EA x MB x 2 E

= (MA x MB) x 2 EA+E .

The product of two floating point numbers is represented by

the integer product of the mantissas times 2 raised to the sum

of the exponents' power. The output sign bit is just the

exclusive or of the input sign bits. Figure 21 illustrates

the operations indicated in the previous equations.

The Exponent Add block is not just a simple integer

adder. Since the exponents are in excess code, some

additional random logic must be used. This module must also

indicate if there is an overflow or an underflow generated by

the add. The Mantissa Multiply block is an integer multiplier
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Figure 21. Block Diagram of a Floating Point
Multiplier

module. This block incurs the most delay and uses the most

logic of the floating point multiplier, so this block must be

optimally designed for speed and hardware. No special

circuitry is required because the mantissa in this system is

represented in signed magnitude. The Normalization block can

be broken up into 3 sub-blocks: Normalizer, Rounder, and

Postnormalizer.

The Normalizer sub-block detects if the product from

the Mantissa Multiply block is a normalized number and

normalizes it if it is not. Since the multiplier only

computes products of normalized numbers the product will be

between 1 and 4. This is illustrated by a 4 bit mantissa
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multiply with a "hidden" bit of the minimum and maximum values

that can be represented:

Minimum: 1.0000 x 1.0000 = 1.00000000;

Maximum: 1.1111 x 1.1111 = 11.11000001.

As the mantissa length increases, the maximum product gets

closer to 4. This makes the decision to normalize and the

actual normalization very simple. If there is a 1 in the next

most significant bit from the "hidden" bit then the mantissa

must be normalized. To be normalized, the mantissa merely

needs to be shifted to the right one bit and the exponent

incremented by one. If the multiplier were to allow

denormalized numbers, then the product would not necessarily

be between 1 and 4. To normalize such a number will require

a significantly larger amount of hardware to detect and shift

the most significant 1 from anywhere in the product mantissa.

The Rounder sub-block rounds the product from the

Normalizer to the correct number of significant bits for the

number system. There are many methods for rounding:

truncation, rounding, unbiased rounding, and jamming to name

a few. Regardless of the method that is used, when a decision

is made to round up, a 1 is added to the least significant bit

of the mantissa. This add could cause carry out which will

require another normalization process called the

Postnormalizer sub-block.
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The Postnormalizer sub-block provides normalization of

the sum generated by the Rounder sub-block. The function is

exactly the same as the Normalizer sub-block.

The Exponent Adjust block is merely an adder for the

incrementing of the exponent generated by the Normalizer and

Postnormalizer sub-block. Implementing the multiplier with

denormalized numbers will require that the adder be capable of

adding more than Ill for the Normalizer increment because the

mantissa product may be less than 1.

3. Floating Point Addition

The primary reason that floating point addition is

more difficult is that the mantissas usually have different

significance. Therefore, before doing any arithmetic, they

must be aligned to perform the mantissa addition. Alignment

means that the exponents must be equal to correctly add the

mantissas. The sum of two positive floating point numbers is:

A + B = MA x 2 E AMBx 2 E .

Assuming that EA < E. then EA - EB is negative. The alignment

of the two inputs is accomplished by shifting the mantissa of

the smaller input the correct number of positions to the

right. The number of positions to shift is determined by the

difference of the two exponents (EA and EB). The sum can now

be represented by:
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A + B = (MA x 2 EA - E + MB) x 2
,

Where the two values in parentheses are of the same

precedence. Figure 22 illustrates the general operations in

a floating point adder.

The first block, the Zero Test block, is to determine

if either of the two inputs are true zero. This is required

only for representing the "hidden" bit of the input mantissas.

If an operand is true zero then the "hidden" bit will be

represented by zero. In this way the adder does not have any

significant special handling logic for zero operands.

Before alignment can be completed, the greater

exponent must be determined. This is done in the Exponent

Compare block. This block provides the selection information

to Mantissa Select block and selects the output sum's correct

exponent. The simplest way to do this is to subtract one

input exponent (EB) from the other (EA) and test the output for

a positive number. If it is positive then A is has the

largest exponent and EA is the sum's exponent. If it is

negative then B has the largest exponent and E. is the sum's

exponent. The outputs from this block are the sum's exponent

that has not been adjusted yet and a selection bit to select

which mantissa shall be aligned and which shall not. The

Mantissa Select block merely selects which mantissa will be
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Figure 22. Block Diagram of a Floating Point Adder

shifted and completes the shift using the selection bit that

is determined in the Exponent Compare block.

The Adder block completes the addition of the

unshifted and shifted mantissas. The Normalization and the

Exponent Adjust are similar to the Normalization and Exponent

Adjust block of the multiplier allowing denormalized numbers.

E. SUMMARY

High speed arithmetic is useful for any application where

fast computation is required. In signal processing

applications, high speed arithmetic processing is a

requirement. The fundamental building block of any spectrum

analyzer is the FFT butterfly which is made from multipliers
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and adders. The cyclic spectrum analyzer requires large FFTs

to be computed which implies many multiplies and adds in the

computation. To compute the cyclic plane in near real time,

the multipliers and adders must be extremely fast. Chapter 3

describes the design of FFTs and cyclic spectrum analyzers in

terms of number of FFT butterflies, multipliers and adders.
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III. CYCLIC SPECTRUM ANALYZER

A. INTRODUCTION

The objective of this chapter is to consider ways to

implement cyclic spectrum algorithms in near real time. The

value used to characterize the closeness to real time is

called the Real Time Factor (FT):

T COMPUTATION TIME
FT = COLLECT TIME

The number of hardware units (p,) needed to operate at a given

factor of real time is:

Pu cu - u
C, -C

F2.A t FTN

Where At = N is the total number of samples processed and C.

is the number of operations performed by the hardware unit.

The complexity product (p,, * FT) is defined as a measure of

the hardware complexity of the implemented algorithms (FFT

butterflies and cyclic spectrum analyzers) to be discussed.

[Ref. 1]

B. FFT DESIGN

1. Introduction

The fundamental building block for any spectrum

analyzer is the FFT butterfly. There are two versions to
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implement the FFT algorithm: Decimation in Time (DIT) and

Decimation in Frequency (DIF). The following discussion

addresses both versions of the radix-2 and radix-4

butterflies. N-point FFT designs using the radix-2 and radix-

4 are discussed and compared.

2. Radix-2 FFT Butterfly

The radix-2 FFT butterfly is simply a method to

compute the Discrete Fourier Transform (DFT) of a two point

sequence. This DFT can be expressed as:

1

X(k) = 57 x(n) e-j2xk/2,
n=O

letting W2 = e' 2. (W2)' is called the weighting or twiddle

factor. X(k) is then equal to:

X(k) = x(O) (W2 )Ok x(l) (W

Substituting the value for W2, X(O) and X(l) are:

X(O) = x(O) + x(1);

X(1) = x(O) - x(1).

The signal flow graph for this algorithm is shown in Figure 23

and is called the radix-2 FFT butterfly. This algorithm can

be implemented with an inversion and 2 adds.

3. Radix-4 FFT Butterfly

The radix-4 FFT butterfly is a method to compute the

DFT of a 4 point sequence. This DFT is expressed as:
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3
X(k)= x(n) (W 4) =x( 0) (W4)°k+x(1) (W4)lk+x(2) (W 4 ) 2 x(3) (W4 ) 3 k,

n=O

where k = 0,1,2,3 and W4 = e j2"4 and

(W4 ) 0 = 1; (W4 ) 1 =-j; (W4 ) 2  -1; (W4 ) 3 =

then X(k) is:

X(k) = x(0) + x(1) (-j)k + x(2) (- 1 )k + x(3) (j)k.

The signal flow graph for this algorithm is shown in Figure 24

and is called the radix-4 FFT butterfly.

4. N Point FFTs

a. Tntroduction

Obviously, sequences that are to be transformed are

much longer that 2 or 4 points. They could be as long as a

million or more points. The N point DFT is given as:

N-1 -j 27k

X(k) = x(n) e N; k = 0,1,2,... ,N-1.
n=0

This DFT can be realized with either the radix-2 or radix-4

FFT butterflies.

b. Radix-2 FFT

(1) Introduction. An N = 2* point FFT can be

constructed from radix-2 FFT butterflies. Let n and k be

represented in binary form:
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x(O) 1 ,. x(O)
x(O) ' x(0)

Figure 23. Radix-2 FFT Butterfly

n = 2'y-ln- + 2 y-2 + + no;

k = 2Y-1kY I + 2Y' 2k_ 2 + + k o ;

then X(k) is:

1 1 1

x(k_ 1... ko) x ( ,..., no)WP.
n0=0n 1 =O ny1=0

Where p is:

p = nk = (2Y'-nY 1 + + no) (2-lk_ + - •+ ko).

(2) DIT Algorithm. From the previous equation W

can be rewritten as:
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x(O) X(o)

x(2) - x(2)

x(3) X(3)

Figure 24. Radix-4 FFT Butterfly

Wp = W(2y-'C,_2 +. . ko) (2y,-_,) ] X ...X [ W(21-1k7-1 +. . (n o)] I

The first term can be simplified into:

W-+ + k0 ) (2v-'n,_) = W v2 '(kon,_)

and the second into:

W (2'k, 1  + " • c ) (2 -n,. ) = W(2k2 ko) (2 -An,.2 )

because:

W22

W2 =WN = N 1

The rest of the terms are simplified in a similar manner.

X(k) can now be rewritten as:
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1 1

X(k * _ . ,k o ) x x(n .1, n o ) [W ((k0 2-.) [ *k n2- 2] X .
no ny-,

X [..... ko)Wno.

Where the W's are the twiddle factors for each stage. The FFT

can be written recursively as a function of the previous

stages:

1

x 1 (k 0 , n ... ,no) : x x 0 (nY1 , ... ,n0) W2Y- (k on .i)

1

x 2 (ko0 kny- 3 ,  ... no) = x (kon 2, . . . ,n o ) W2-'(2k+k°) n.- 2;

y_2 0

and finally:

1
*y -1 (k *.. k 2 n) (2yvlkl-, +* ,xyf(ko,...ky I )  k 1k , . , -2, no) W(2 :' " k)

n 0=0

x(k) =x(k,_, . .. ,k o ) = xy (k.,. ky-1)

Where xo(n) is the input sequence. The output of the final

stage will always be in bit reversed order hence the bit

reversal of the last equation. [Ref. 9:pp. 176-178]

(3) DIF Algorithm. WP can be rewritten as:

WP = [Wf(2-i,-* . n0 ) k 0 ] [W(2y-l, + ... + no) 2k . W2*r-," ... +N) 2,-
1 ,]

Simplification similar to that done in the DIT algorithm leads

to the following recursive equations that describe the FFT as

a function of the previous stages:
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1
x1 (k0, ny_2 ' , ,no) = x0 (n,_1, .. , n0) W(2,-' ... )o

1
x2 (ko , k, , n.-3 , n.) E x1 (ko n,-2 , • no) W (27-I n " "" no)2k,;

n,_2 =0

and finally:

1

(y oo....-ky = 1 x,1(ko,.. , ky-2 , n0) W Ioky;

no=0

X(k) = x(k,.- .... ko) = x, (ko, . k,_)

[Ref. 9:pp. 177-180]

(4) Complexity of FFT using the Radix-2 Butterfly.

The complexity for an N point, radix-2 FFT can be computed in

number of butterflies. Each stage will require N/2 two point

FFTs (butterflies). The total number of stages is log2(N).

The total number of radix-2 butterflies required to implement

an N point FFT is:

CB = 'Elog2N.

If the butterfly is implemented in a complex number system

then the number of complex multiplies (C,) and additions (C,)

are:

CB = -{log2N;

CBa = Nlog2N.
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Then the number of real multiplies (C,,) and additions (C, )

is:

C m = 2Nlog2N;

CBra = 3NlogN.

If each multiply and add were implemented in hardware then the

FFT would be a rate-l operator i.e., in each clock cycle, 2

complex x values and 1 W value would be input to the butterfly

and the complex butterfly would produce 2 complex output

values. However, it would be uneconomical and unwise to

implement the FFT as a rate-i operator with rate-i

butterflies. The radix-2 butterfly can be designed as a rate-

1/2 operator which gives a complexity product for an N point

FFT of:

2Cb
Ph, *FT = N

Substituting C. for C. then:

Phu" FT = iog 2N.

This shows that to achieve real time (FT = 1) then ph = log2N

hardware units (complex 1/2 rate radix-2 FFT butterflies) are

required. [Ref. 1] Reference 1 shows a structure of a radix-2

FFT constructed using rate-1/2 complex butterfly units.
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c. Radix-4 FFT

(1) DIT Algorithm. An N = 40 FFT can be

constructed from radix-4 FFT butterflies. Let n and k be

represented in quaternary form:

n = 40-lnp-, + 4P-2n,-2 + + n.;

k = 4P-1kP_1 + 4P- 2kP. 2 + • + k 0 ;

then X(k) is:

3 3 3
X(kP_1 ,ko) = , E . x(np-1 , .) WP,

n o = Onl=0 n,_1

if p = nk, then WP is:

WP = [W(4 ' Jkp- , ..... k,) (4P-n-' ) ] . . . [W(40 - 1k p- . . k°) (no)]

The first term can be simplified into:

W(4P-:kp.1 ko) (4P-1np_,) = W4P -D (*onp,)

and the second into:

(4 *Ik_ . + k,) (4P-2np_ 2 ) = w(4k-2ko) (4 2n_)

because:

- N2

W4 = WN = e -  1

The rest of the terms are simplified in a similar manner. The

FFT is written recursively as a function of the previous

stages:
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3
x 1 (k.,n,-2 . ,no) E Xo (n , .,no) W 'Pon;

n,-1=O

3
x 2 (ko k,n 3, . ,no) , x (ko,np2 '  . ,no) R74-2(4 k ko),..;-

n,- 2 = 0

and finally:

3
xp (k o, . . _) xp-1 (ko, .kP_- 2 1no) W(4-k,- .. . I

no0

X(k) = X(kP .,k o ) = xp(k o . ,kp_)

The twiddle factors of each stage can be simplified as

follows:

N .2NWAD-lkonpl - (W74P-)konlP. 1 = (W ) konl_: - (e-3 -i)k0 _5 = (W4)konlP.;

N
A (4k+ko)n .2 = ( wA~ I-  ):4k.k 0) fl-6 = ( wkp (4k 1.k 0)n _2 = (WW ( ) kn. -2

and finally:

4-k- .... + k0 0  = (W 4 ) k.pn0 (wS) kP21o X . . . X (WN)k0-0.

The W4 terms are the twiddle factors internal to the radix-4

butterfly. All of the other W terms are external twiddle

factors. These factors indicate that the first external

twiddle factor of the butterfly will always be 1. This means

that only three twiddle factor multipliers are required.
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(2) DIF Algorithm. Using a similar simplification

and rearrangement of the W exponents as in the radix-2 DIF

algorithm, the recursive equations that describe the FFT as a

function of the previous stages are:

3
x (k o n 2 , . .n o ) = xo (n _, ,n o) W(4 - n- + n0)0;

np_1 =0

3
x2 (k., kj , no-,, ,no) = , x 1 (k.,n,-2 '  ,no) - 4k

np_2

and finally:

3
x, (k), .. , )  = xp_1 (k o , . . . kp 2 1 no) W40 -1nokp- ;

n0=0

X(k) = X(kP_1 ... ,k0 ) = xp (k o,.... kp1 )

The twiddle factors can be simplified for this algorithm also:

W,(4 P -no-, . + no)l = W4) no.0 ( wJ ) nP, 2k0  x . . . x (WN) nOkO;

W1 0 4 1  =( 4  ~ I~ (W.) kn 0 W)  np-akX . . . X ( WJV4)kn

and finally:

W4 0noko, (W4) NoI.

These equations also indicate only three external twiddle

factor multiplies per butterfly. The difference is that the

multiplies are after the butterfly instead of before the

butterfly.
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(3) Complexity of FFT using the Radix-4 Butterfly.

The complexity for an N point, radix-4 FFT can be computed in

number of butterflies. Each stage requires N/4 4-point FFTs

(butterflies), and the total number of stages is log 4(N). The

total number of radix-4 butterflies required to implement an

N point FFT is:

CB = Nlog4 N.

4

If the butterfly is implemented in a complex number system

then the number of complex multiplies (C,) and additions (Ca)

are:

CB,= !Nlog4N;
44

CBa = 12Nlog 2N.

Then the number of real multiplies (C,,,) and additions (CB.)

is:

CBZM = 3Nlog 4N;

CBZra = -1N1og 2N.

2

If there is a multiplier and adder for each of these

operations the FFT would be a rate-i operator. As in the case

of the FFT implemented with radix-2 butterflies, implementing

the FFT in this manner would be uneconomical. The radix-4
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butterfly is best implemented as a rate-1/4 operator which

gives a complexity product for an N point FFT of:

4 Cb
P"uFT=-N-"

The rate-l/4 operator is shown schematically in Figure 25. It

receives 4 complex x-inputs sequentially in 4 clock cycles and

simultaneously inputs 4 multiplying complex twiddle factors

and produces the 4 next level components sequentially after a

pipeline delay of d clock cycles. Substituting C. for C. then:

Phu 'FT = 1og4N.

This shows that to achieve real time (FT = 1) then ph = log4N

hardware units (complex 1/4 rate radix-4 FFT butterflies) are

required. [Ref. 1]

d. Comparison

The complexity of an FFT using the radix-2 and

radix-4 complex FFT butterflies is given in paras. B.4.b.4 and

B.4.c.3, respectively. Although the complexity of the radix-4

butterfly is much greater than the radix-2 butterfly, an FFT

built with radix-4 butterflies has many less butterfly units

than the FFT built with radix-2 butterflies ((N/4)log 4N as

opposed to (N/2)log2N). If the complex radix-4 butterfly can

be built on 1 chip then a large FFT should be built with these

units.
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COMPLEX RATE-1/4

X, (i) RADIX-4 FFT BUrrERFLY Ddx1 l 1(i)

wk(i)

(for each butterfly, i = 1,2,3,4)

Figure 25. Rate-l/4 Complex Radix-4 FFT Butterfly

C. CYCLIC SPECTRUM ANALYZER DESIGN

1. Input Specifications

The input to the analyzer is a sequence of floating

point values that are obtained by sampling a real wideband

signal at approximately 50 MHz and then applying the Hilbert

transform to the digital signal. This implies a bandwidth of

at most 50 MHz using the complex envelope. Since the signals

of interest (SOI) for this analyzer are primarily wideband

signals, the frequency resolution is not required to be

extremely small.
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2. Digital Implementation

a. Introduction

There are three algorithms to compute the cyclic

spectrum stated in Chapter 1: 1) Frequency Smoothing Method

(FSM), 2) Strip Spectral Correlation Analyzer (SSCA), 3)

Frequency Accumulation Method (FAM). All of these algorithms

require a large number of arithmetic computations to be

implemented and a large amount of hardware to execute them in

near real time. The objective is to consider ways to

implement these algorithms in real time. [Ref. 1]

b. Frequency Smoothing Method (FSM)

The FSM algorithm consists of two parts: an N

point spectral correlator and an M point summation unit. M is

the time-bandwidth product (At * Af). Figure 26 illustrates

the architecture for the FSM algorithm. The frequency values

f and a are denoted by:

f k + 1
2N

k- i
N

Where N is the length of the input sequence, and k and 1 are

sequence indices. The complexity of this algorithm, described

in number of FFT butterflies is:
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Xk+m

x(n)r

M/2
i xl+m M=-U/2+1

Figure 26. Frequency Smoothing Method Architecture

c4 _ -__log2At

complex radix-2 butterflies and the complexity product is:

Pb2 - FT = 1og 2 At

for rate-l/2 complex radix-2 FFT butterflies. Implementing

the algorithm's FFTs with radix-4 butterflies, the complexity

product is:

PU • FT = log4 At.

The correlator portion has a requirement for separate

multipliers enumerated by the complexity product p,., * F. given

by:
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AtAfPZmW "FT- f

rate-i real multipliers. (Ref. 1]

c. Strip Spectral Correlation Analyzer

The SSCA algorithm consists of four parts: 1) an

N' point FFT, 2) a down conversion multiplier, 3) a

correlation multiplier, and 4) an N point FFT. Where LP = At,

L = N'/4 = N/4M, Af = 1/N' = M/N, Aa = 1/At = 1/N, and AfAt =

N/N' = M. Figure 27 [Ref. 1] illustrates the architecture for

the SSCA algorithm. [Ref. 1]

The complexity of this algorithm, described in

number of FFT butterflies is:

c AtA AtAf + 2AtAflog 1

4b f2 Af Af 2 Af

Then the complexity product is:

Pb2 ' FT 1 .og 2 AtA + 4 1 0 92Af Af 4 ogAf

for the rate-i/2 complex butterflies. Using radix-4

butterflies, the complexity product is derived from the

complexity of the FFTs:

Cb =Nlog4, NM=094NlN og + + Aloog,-fg-E +og -E2 10°g8A

Then the complexity product is:
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e-i2, kL/Y

X~k(mL + n)

x(mL +n) w N'FF7 Xkm

x(mL+n)

Figure 27. Strip Spectral Correlation Analyzer
Architecture

4c _ 4og Cf -4--log, AtAfAT 4 Af 2Af Af

for rate-1/4 complex radix-4 butterflies. The remaining

number of multiplies is:

2F7  - +12

for the rate-1 multipliers. [Ref. 1]

d. FFT Accumulation Method (FAN)

The FAM algorithm consists of four parts: 1) an N'

point FFT, 2) a down conversion, 3) a correlation multiplier,

and a P point FFT. Where N = At = LP, I/N' = M/N = Af, and L
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= N'/4. Figure 28 illustrates the architecture of the FAM

algorithm. [Ref. 1)

The complexity of this algorithm, described in

number of FFT butterflies is:

Cb2 _ 2AtAflog'2f - AtA flog24 AtAfAf Af 2Af 2  2

The complexity product is:

Pb2 FT - log24AtAf + 41og 2 f

for rate-l/2 complex butterflies. Using radix-4 butterflies,

the complexity product is derived from the complexity of the

FFTs:

NNOg 4= A tAt2  AtA 10og 4 AtAf.
Cb = Ni ogL - 4 14

M 4M At g 4 - + 4A f
2

Then the complexity product is:

4
pb, " FT= -b -41°g 1 + 1og14AtAfN TYZf

for rate-1/4 complex radix-4 butterflies. The remaining

number of multiplies is:

Pzm -FT + 20 = 4 , 20

M Af

for the rate-l real multipliers associated with the down

conversion, the correlator, and the windowing function. [Ref.

1)
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e-i2rkmL/N'
Xkt mL) SS

(mL+n),(

ei2TrL/ N'

Figure 28. FFT Accumulation Method Architecture

D. CONCLUSIONS

Figure 29 (Ref. 1] is a log-log plot of the complexity

product versus time-bandwidth product (AtAf) for a given Af

1/8. Although the FSM algorithm is the simplest conceptually,

the algorithm is obviously much more complex than the two

other algorithms. The SSCA algorithm has the smallest

complexity for large N. Figure 30 is log-log plot of the

complexity product versus AtAf with a given Af = 1/8 for the

FAM algorithm using the radix-2 and the radix-4 complex

butterflies. Chapter 4 discusses the actual VLSI design of a

rate-i/4 radix-4 complex FFT butterfly and the multiplier and

adder that is used to construct it.
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Complexity Product -Three Realizations

-~

0

03 1- -3 4

Log Time-Bandwidth Product

-- revised SSCA E3- FAM E~-FM versin

Fig~ure 29. Log Complexity Product vs. Log AtAf

Complexity Product -Two Realizations

U 2.4

2-

E .
0

0, _ _ 2_ _4 5

-Log Iime--oridwidlh Product
- Radix-2 Butterflies 8s Rodix-4 iule fe

Figure 30. Log Complexity Product vs. Log At~f
using Rad4.x-2 and Radix-4 Butterflies
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IV. DIGITAL DESIGNS

A. INTRODUCTION

1. Specifications

Specifications for the multiplier, adder, and FFT

butterfly are given in Appendix B. The fabline MHS CN10C is

a 1.0 micron feature size technology. To achieve the

operating frequency required all designs are pipelined.

2. Pipelining

Pipelining is based on separating a logic circuit

(multiplier, adder, or FFT) into smaller and faster

subcircuits. These subcircuits or stages are separated by

storage registers. The storage registers synchronize and save

the output of one stage and provide that output as input into

the next stage. Figure 31 illustrates a pipelined logic

circuit. Although the delay from a given input to the correct

output is longer and takes multiple clock cycles to complete

one operation, this method provides a way to implement the

logic circuit with a high frequency clock. New inputs must be

provided into the pipelined circuit every clock cycle to keep

the pipeline full. Pipelining is ideal for signal processing

applications because the large amount of data to process will

always keep the pipeline full.
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Figure 31. Pipelined Process

B. FLOATING POINT MULTIPLIER

1. Introduction

The floating point multiplier design had required only

6 stages to implement a 45 MHz clock frequency. By far the

most limiting portion (the slowest stage) was the parallel

multiplier array. Stage 1 is comprised of the Genesil library

parallel multiplier, the conversion of the input exponents

from excess code to two's complement, and the XOR of the input

sign bits. Stage 2 sums the partial products from the

parallel multiplier cell and add the two's complement

exponents together. Stage 3 performs the normalization.

Stage 4 performs the adding for the rounding function. Stage

5 performs the postnormalization required due to the addition
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from rounding and the exponent adjusting due to normalization

and postnormalization. Stage 6 provides the setting or

clearing of all bits in the cases of exponent overflow or

underflow. The multiplier will be described in the following

paragraphs as illustrated in Figure 21 without regard to

pipelining stage boundaries.

2. Multiplier Block

This block is the hardware that computes the product

of the input mantissas. Since the mantissas each have a word

length of 14 bits including the hidden bit, the product will

be 28 bits wide. In this case, the Genesil library parallel

multiplier provides the 14 least significant bits of the

product but only provides two partial products for the next 13

more significant bits. These partial products must be summed

together to get the 14 most significant bits of the product.

The conditional sum adder provides the required speed with an

acceptable amount of hardware used. The Genesil library

multiplier also provides pregenerated "sticky" bits required

for rounding. Sticky[l) is the OR of the least significant 12

product bits and sticky[O] is the OR of the least significant

13 product bits. The output of the Multiply block is the 16

most significant product bits and the "sticky" bits. The 12

least significant bits are adequately represented by the 2

most significant of these and by the "sticky" bits. Figure 32
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Figure 32. Multiply Block

is a block diagram illustrating the functions completed in the

Multiplier block.

3. Exponent Add Block

The function of this block is to add the two input

exponents. This would be rather difficult to do leaving the

exponents in excess code, so the they are converted to two's

complement simply by inverting the most significant bit of

each of the exponents. Before the conversion is done, each

exponent is tested for all zeros which indicates that the

floating point number associated with the exponent is true

zero. A flag is generated for this condition so that after

all the operations are complete in the floating point multiply
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the output can be set to zero. The exponents are then added

as two's complement integers using a 6-bit carry ripple adder

with additional logic to detect overflow and underflow.

Overflow and underf low are indicated at the output of the

floating point multiplier and they are also used to set or

clear the output in the cleanup stage. The product exponent

is then converted to excess code before being output from this

block. Figure 33 is a block diagram illustrating the function

of the Exponent Add block.

4. Normalization Block

a. Introduction

As stated in Chapter 2 the Normalization block can

be broken down into 3 sub-blocks. Figure 34 is the block

diagram describing the functions executed by the Normalization

block. The Normalizer sub-block performs the initial

normalizing of the mantissa product. The Rounder sub-block

performs the rounding of the mantissa product to the correct

number of significant bits. The Postnormalization sub-block

performs the final normalization due to possible carry-out

during the rounding process.

b. Normalizer Sub-Block

The Normalizer sub-block uses the 16-bit product

output from the Multiplier to perform the initial

normalization of the mantissa product. Since the number

system only allows normalized numbers the input mantissas will
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always be between 1 and 2 and the product mantissa will always

be between 1 and 4. This implies that normalization is only

required when the product mantissa is greater than or equal to

2 or 102. This occurs when the most significant bit of the

product mantissa is a 1. If this is the case, the product

mantissa is shifted 1 bit to the right and a 1 is sent to the

Exponent Adjust block to be added to the product exponent. If

the most significant bit of the mantissa is a 0, then no

normalization is done. In either case, the most significant

bit is dropped since it is the hidden bit of the product

mantissa. All of these operations are simply completed with

a 2-input multiplexer. The output of the Normalizer sub-block

is the 14-bit product mantissa and the add bit for the

Exponent Adjust block.

c. Rounder Sub-Block

The Rounder performs the unbiased rounding of the

product mantissa. The sticky bits and the two least

significant bits of the product mantissa from the Normalizer

sub-block are used through logic modules to determine when to

add 1 to the 13 most significant bits of the product mantissa.

The 13-bit product mantissa and the carry-out possibly

generated is output to the Postnormalizer sub-block to

complete the required normalization.
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d. Postnormalizer Sub-Block

The Postnormalizer sub-block performs the same

function as the Normalizer sub-block with the carry-out from

the Rounder sub-block as the decision maker for normalizing.

The output of the Postnormalizer sub-block is the final 13-bit

product mantissa and another add bit for the Exponent Adjust

block.

5. Exponent Adjust Block

The Exponent Adjust block is merely a 6-bit carry-

ripple adder to add the excess code product exponent to the

add bits generated in the Normalization Block. Since these

add bits are only 1-bit wide they can both be added using one

input and the carry-in of the least significant bit of the

adder. Overflow during this add is detected by a carry-out

from the adder. Underflow is not possible because the

function is always an add, not a subtraction. The output of

the Exponent Adjust block is the final product exponent and an

overflow bit.

6. Clean-up

The Clean-up function is just clearing or setting

every bit except the sign bit of the product for certain

special cases. If there was exponent overflow either in the

Exponent Add or Exponent Adjust blocks then all of the bits

are set and output overflow bit is set. If there is exponent

underflow, then all of the bits are cleared and the underflow
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bit is set. In the case when at least one of the floating

point inputs is zero, then all of the bits are cleared also.

C. FLOATING POINT ADDER

1. Introduction

The Floating Point Adder is a much more complex design

than the multiplier. The only similarities between the

multiplier and the adder are the Postnormalizer, the general

structure of the Normalization blocks, and the final clean up.

The adder design required 14 pipeline stages to implement it

with a operating frequency over 45 MHz. No single function or

section of the adder incurred the largest delay. The adder

will be described in the following paragraphs as illustrated

in Figure 22 without regard to pipelining stage boundaries.

2. Zero Test Block

The Zero Test block tests each input exponent for true

zero. If an exponent is true zero then the Zero Test block

generates a 0 for the "hidden" bit of its mantissa to be

passed to the Mantissa Select block. The output of the Zero

Test block is the input exponents and the 2 "hidden" bits.

3. Exponent Compare Block

The Exponent Compare block determines which floating

point input number has the smaller exponent. After the

exponents are converted to two's complement, this is

accomplished by subtracting one from the other and vice versa
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and checking the sign of one of the differences. Let A be one

input and B the other and their associated exponents EA and EB.

If EA - EB < 0 then EA is the smaller exponent, so the Mantissa

Select block is signaled to select the mantissa of A for right

shifting and the difference is the number of bits to shift.

EB is selected as the sum exponent of the floating point

number. The outputs of the Exponent Compare block are the sum

exponent, the mantissa select bit, and the number of shifts.

Figure 35 is a block diagram of the functions completed in the

Exponent Compare block.

4. Mantissa Select Block

a. Introduction

The Mantissa Select block performs the overall

function of shifting the mantissa of the floating point number

with the smallest exponent to the right the correct number of

bits to align it with the other mantissa. Figure 36 is a

block diagram of the Mantissa Select block.

b. Ones' Conversion Sub-Block

Since the floating point numbers are in signed

magnitude, the easiest and least hardware intensive number

system to accomplish the sum is ones' complement. The

conversion requires only to invert all the bits of the

mantissa if the number is negative. This sub-block also

concatenates the "hidden" bit as determined in the Zero Test
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block. The outputs of the Ones' Conversion sub-block are 2

15-bit mantissas.

c. Selector Sub-Block

The Selector sub-block determines, using the

mantissa select bit generated in the Exponent Compare block,

which mantissa will be shifted and which will not. This is

accomplished with two 2-input multiplexers. The outputs of

the Selector sub-block are the two mantissas.

d. Align Sub-Block

The Align sub-block shifts the mantissa selected

for alignment done in the Selector sub-block. The number of

bit positions shifted to the right was determined in the

Exponent Compare block. This shifting function is done with

a barrel shifter. A barrel shifter uses logic not sequential

circuitry to complete a shift. The output of the Align sub-

block is the 29-bit shifted mantissa.

5. Adder Block

The Adder block peiforms the actual addition of the

two mantissas. The integer adder used is the Conditional Sum

adder. It provides the requisite speed without using a large

amount of chip area. The most significant 15 bits of the

shifted mantissa is added to the unshifted mantissa. Both

mantissas are sign extended one bit to prevent carry-out due

to overflow or underflow. Thus, the only reason for a carry-

out would be to generate an "end-around" carry. The addition
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of the "end-around" carry is done with 16-bit half-adder since

the only inputs are the sum and the 1-bit "end-around" carry.

The output of the adder block is the sum of the mantissas

concatenated with the 15 least significant bits of the shifted

mantissa. Figure 37 is a block diagram of the Adder block.

6. Normalization Block

a. Introduction

The Normalization block of the floating point adder

is similar in structure to the one in the floating point

multiplier. It can also be broken into the Normalizer,

Rounder, and Postnormalizer sub-blocks. It differs only in

the Normalizer sub-block since the mantissa sum could be any

number between 0 and 4. This means the leading nonzero bit

could be in any bit position. The Normalizer must be able to

detect and shift accordingly. Then Postnormalization sub-

block is exactly the same as the one in the floating point

multiplier.

b. Normalizer Sub-Block

Before the mantissa sum can be normalized it must

be converted from ones' complement to signed magnitude. Then

the Normalizer sub-block uses a progra.aable priority encoder

to sense the leading nonzero bit. This priority encoder can

generate any bit pattern for a given bit position of the

leading nonzero bit position. The pattern in this case is the

number cf bit positions to shift mantissa. But the exponent
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must be adjusted also, so another encoder is used to generate

the two's complement number to be added to the exponent in the

Exponent Adjust block. The mantissa will be shifted with a

barrel shifter. The outputs of the Normalizer sub-block are

the two's complement number to be added to the exponent, the

29-bit normalized mantissa sum, and the sign bit.

c. Rounder Sub-Block

The Rounder sub-block must determine from the 17

least significant bits with logic whether to round the

mantissa sum up or to truncate. The outputs of the Rounder

sub-block are rounded 13 mantissa sum bits and the carry-out

possibly generated by the addition due to round up.
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7. Exponent Adjust Block

The Exponent Adjust block provides the adder to add

the two's complement number and the postnormalization exponent

adjustment bit generated in the Normalization block to the

exponent selected for output. Since the exponent is only 6

bits wide, the carry-ripple adder was used. The output of

this block is the exponent of the final sum.

D. RADIX-4 FFT BUTTERFLY

1. Introduction

The design is a rate-l/4 radix-4 complex floating

point FFT butterfly. Rate-l/4 implies that one data point is

input and one FFT point is output every clock cycle. The

butterfly can be separated into four parts: an external

twiddle factor multiplier; a shift register and latch; an

internal twiddle factor multiplier; and a 4-input adder. The

external twiddle factor at the input implies the DIT

algorithm. Figure 38 is the block diagram of the rate-l/4 FFT

butterfly.

2. External Twiddle Factor Multiplier

The twiddle factor multiplier is just a complex

multiplier to facilitate computation of large FFTs with the

radix-4 butterfly. The complex multiplier will require 4

floating point multipliers and 2 floating point adders to

implement. Figure 39 is the block diagram of the external

twiddle factor multiplier.
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3. Shift Register and Latch

To compute a 4-point FFT at 1/4 rate, 4 data points

must be clocked in and held for four more clock cycles.

Figure 40 is the block diagram of the shift register and

latch, and the internal twiddle factor multiplier

(multiplexers). The shift register portion is just 3

standard D-registers with their outputs connected to the

inputs of the next register and to the inputs of a latch. A

modulo-4 counter allows the 4 data points to be clocked in and

when the counter goes from 1 1 b to 0 0 b it generates a carry-out

which is ANDed with the PHASEX clock and the output strobes

the latch. The latch holds the four data points for 4 clock
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Figure 39. External Twiddle Factor Multiplier

cycles at such time the latch is strobed again to hold 4 more

data points.

4. Internal Twiddle Factor Multiplier

The equation for the 4-input DFT computation was given

in Chapter 3:

X(k) = x(0) + x(1) ( _j)k + x(2) (-1 )k + x(3) (j)k k = 0,1,2,3.

To generate the correct summands for a given k, multiplexers

and logic will be used. The first summand (x(O)) is constant

with respect to k, so it is left unchanged. The second and

fourth summands (x(1) and x(3)) require 4-input multiplexers

to complete the product. The third summand (x(2)) is just
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inverted for odd k. The different k's are generated by the

counter in the shift register and latch portion.

5. 4-Input Comuplex Adder

This adder is just 3 2-operand complex floating point

adders arranged as in ', gure 41. Each 2-operand complex adder

requires 2 2-operand real floating point adders which gives a

total of 6 2-operand real floating point adders to implement

the 4-input complex floating point adder.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The rate-1/4 radix-4 complex floating point FFT butterfly

was successfully designed and simulated in VLSI at a clock

frequency of approximately 45 MHz. The design is large and

will be expensive to fabricate. It utilizes 4 floating point

multipliers, 8 floating point adders, 2 4-input multiplexers,

3 data registers, 1 latch, and some assorted logic. The

silicon area of the IC including pads is approximately 200,000

mils2. Appendix B describes the IC in detail.

Logic-Compiler made this design feasible because of its

ability to optimize the design for area and performance. If

Logic-Compiler were not available and the author had to rely

on the Genesil Standard layout compiler, the adder and

multiplier would each be about 40,000 mils2 in area and have

an operating speed of less than 40 MHz. A complex multiplier

implemented on one IC chip would not have been possible, let

alone a radix-4 FFT butterfly. Logic-Compiler has made the

Genesil Standard Compiler obsolete except for IC chip

floorplanning which requires user floorplanning for pad

placement.
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B. RECOMMENDATIONS

The author makes the following recommendations:

" Investigate further the commercially available IC chips
for FFT computations and control path design.

" Purchase 1.0 micron radiation hardened fabrication line
library for Genesil.

" Investigate fabrication costs for the FFT butterfly IC
chip.

" Begin design of chip sets for large FFTs and ultimately
the cyclic spectrum analyzer.

" Design a bonafide 4 input adder to replace the one built
from 3 2-input adders which will reduce silicon area of
the FFT butterfly design.
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APPENDIX A. AUTOLOGIC

A. GENESIL SILICON COMPILER

1. Introduction

The Genesil Designer is an integrated set of automated

ASIC design tools that contain the IC design expertise

necessary to transform a functional specification into a data

base from which an IC can be produced. Genesil provides 1)

High-level design entry allowing system designers to create

dense physical designs for integrated circuits; 2) Rapid

feedback on key performance metrics during exploratory and

detailed design stages; 3) Verification tools for simulation,

timing analysis, and layout; 4) Compiler libraries that can be

expanded with user developed compilers; 5) The ability to

import layouts designed with other CAD tools; 6) Multiple

fabrication options for process-independence of designs.

Figure 42 [Ref. 10:p. 1-1) illustrates the Genesil

environment. Input to Genesil is done with high-level

functional descriptions, using a combination of forms-based

entry and schematic capture. Output consists of layout files

that are sent to an IC manufacturer for fabrication.
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2. Design Process

a. Introduction

There are three phases in the Genesil design

process: 1) Design Entry; 2) Design Verification; 3) Design

Manufacture. Prior to beginning the design process, the

designer must determine the required logic functionality, the

physical requirements for timing, size, and power consumption,

and the testability -equirements.

b. Design Entry

(1) Introduction. Design entry in Genesil is

called forms-based entry. Basically, the design parameters

are input via menus and forms that Genesil provides. The
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design process is initialized by selecting the type Lf module:

Parallel Datapath, Block, Random Logic, General. Random Logic

modules include functions that range from logic gates to

multiplexers and full adder cells. Blocks include RAM, ROM,

PLAs, pads, and parallel multiplier cells. Parallel Datapath

modules are optimized for parallel data and control

operations, including: arithmetic and logic functions; bus-

structured interface operations; and parallel control

operations. General modules contain a number of sub-modules

that are of any type module described above. (Ref. 1l:p. 1-1]

There are four basic tasks to be accomplished in design entry;

header definition, specification definition, netlisting, and

floorplanning.

(2) Header Definition. The header form provides

the Genesil user input to specify fabrication line, function

type, IC package type, and compiler type. The fabrication

line can be selected from the list provided in the header

form. Header forms for Block module provides the different

functions that can be selected. If the design is for a

complete chip, the header form provides different packages in

the Genesil library for selection. Compiler type can either

be Standard Genesil or Logic-Compiler.

(3) Specification Definition. Definition of the

logical function of the module is completed during

specification definition. The specification menu and form
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vary according to the module type selected. Generally, this

form allows the user to define the module specifics. In

parallel datapath modules bus widths and type of bus drivers

are specified. In a random logic module, the actual function

is defined, such as adder, multiplexer, or logic gates.

Blocks are specified with width and depth of RAM, ROM, PLAs,

or parallel multipliers. All modules provide the ability to

specify names of nets, the ability to specify the clocks, and

the ability to create sub-modules.

(4) Netlisting. Netlisting is performed in a

general module to specify the interconnections between sub-

modules and to specify which nets will be external and

internal to the general module. The netlisting can be done

explicitly during the specification definition process by

naming interconnecting nets the same name but the nets will

still have to be designated as internal or external during the

netlist process.

(5) Floorplanning. Floorplanning is performed in

a general module to physically arrange the sub-modules in the

module and to specify the locations of external nets on the

edge of the module. Genesil also provides a program called

Flair that gives more control over sub-module placement and

wire routing. If the block compiler is Logic-compiler then no

floorplanning is required because it is done automatically

within the block compiler.
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c. Design Verification

(1) Introduction. Design verification is the

process to verify a circuit for correct functionality and

performance. Genesil includes tools to verify the logical

functionality, the physical performance, and the layout of the

design before fabrication. The ability to verify first the

logic and then the performance makes each process faster.

Genesil also checks for electrical design rule violations, net

inconsistencies, and illegal bus merging during block

compilation. [Ref. 10:p. 1-5)

(2) Simulation. The Genesil simulator provides

functional models and a demand-driven engine for rapid

feedback, a test-vector assembler, a Genie-based interface,

which offers both programmatic and command-line control,

modeling, and debug capability. [Ref. 10:p. 1-5] High-level

functional models provide rapid feedback on logical

verification. Switch-level models (GSL) provide final circuit

verification. Test vectors can be generated with the test

vector assembler (MASM) or with Genie check functions. [Ref.

12)

(3) Timing Analysis. The Genesil timing analyzer

predicts performance base on timing models of the design,

which were generated during block compilation. Reports th.t

are generated include maximum clock frequency, minimum clock
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phases, setup and hold times, and output delays. [Ref. 13:p.

1-1]

d. Design Manufacture

Genesil generates tooling tapes in industry

standard (CIF) or GDSII tape formats for photomask or

customized for in-house fabrication process. [Ref. 10:p. 1-6]

B. LOGIC-COMPILER

1. Introduction

Logic-Compiler is an alternative compiler that

provides optimal designs for Genesil modules. Figure 43 [Ref.

14:p. 1-1] displays the Logic-Compiler design process.

Essentially, Logic-Compiler takes Genesil modules and makes

then compatible with Autologic. Autologic then produces

optimized designs. These optimized netlists are then used to

produce Genesil layout and timing models.

2. optimization Process

Logic-Compiler enables the user to control design

performance, partitioning, aspect ratio, pinout, and

feedthroughs for faster, easier-to-make tradeoffs between

performance and density. [Ref. 14:p. 1-1] Figure 44

illustrates the Logic-Compiler optimization process. Input

into Logic-Compiler is the simulation model of a Genesil

module and the Logic-Compiler control editor. The simulation

model from Genesil is a netlist of simulation primitives. The

logic optimization is for area minimization is done in
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Autologic. Autologic produces an optimized netlist of the

simulation model. The Lpar Netlist block places logic cells

and puts wire routing between rows. The L Compiler block

generates Genesil layout and timing models from the optimized

netlists. [Ref. 14:p. 1-3)

3. Using Logic-Compiler

a. Introduction

The Logic-Compiler option is used in place of the

Genesil block compiler. Logic-Compiler uses a Genesil defined

module as input to produce a single block of layout by

composing its source netlist from the block simulation

netlists and object netlist definitions in the module. The
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Logic-Compiler compiled module does not require floorplanning

because all cell placement is done automatically. In a

general module where the module is defined by a group of sub-

modules, the lower level compile options are ignored. Logic-

Compiler creates a layout for the complete module, regardless

whether the sub-modules have the Standard compiler or the

Logic-Compiler option.

Placement in the floorplanning function is not

required to define a module that is compiled with Logic-

Compiler but the pinout portion still must be completed. This

is done in the Logic-Compiler control form and menu along with

defining the compile parameters for the module.

b. Logic-Compiler Control Editor

The Logic-Compiler control editor allows the

designer to choose the level of CPU effort for area and

performance optimization. Parameters that can be specified

are number of logic rows, cellset, and the level of CPU

effort. The number of logic rows can either be specified by

the FORCE option or automatically chosen with AUTO. There are

three cellsets: 1) IOTA1_1 is tailored to 1.5 to 3.0 micron

processes; 2) IOTA1_2 is also tailored to 1.5 to 3.0 micron

processes but is larger and faster than IOTA1_1; 3) IOTA2 is

tailored for 1.0 micron processes. The level of CPU effort

can be set for low, med-low, medium, med-high, high, and

maximum for both area and performance optimization.
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c. Customizing the Optimization

In the Logic-Compiler menu, the optimization can be

further customized by: 1) Defining the clocking regimes with

the EDITREGIMES command; 2) Specifying the clock edges with

the SPECIFYCLOCKS command; 3) Defining timing constraints

with the EDITCONSTRAINTS command; 4) Specify locations of

external connectors with the SELECTCONNS command; 5) Specify

the number and location of router feedthroughs with the

DISPLAY FEEDTHRUS command.

C. AUTOLOGIC

1. Introduction

a. Components

Autologic performs synthesis optimization on an

input netlist to produce a netlist optimized for area and

performance. Figure 45 [Ref. 15:p. 1-1] illustrates

Autologic's components. Files are designated with dashed

lines and programs are designated with solid lines.

Essentially, Autologic is a netlist processor and a logic

synthesis engine. The netlist processor is a general purpose

netlist manipulation tool that can read a large variety of

netlists, including Genesil netlists, manipulate netlists, and

write out netlists in any format. The synthesis engine reads

the netlist and optimizes the design, based on a target
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technology database and user-supplied controls and constraints

(via Logic-Compiler), using its built-in algorithms for

optimizing, reading, writing, and scanning netlists and

performing timing analysis. [Ref. 15:p. 1-2 - 1-3)

b. Optimization Plovt

The optimization flow in AutoLogic consists of:

1) Mapping the input netlist into target primitives; 2)

optimizing for area; 3) Running timing analysis; 4) Optimizing

for performance and running timing analysis again until the

performance constraints are met. Optimizing for area, which

is measured in number of logic gates, is done in the synthesis

engine. The process is called logic reduction. Timing
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analysis is done to determine if the constraints generated by

the user via Logic-Compiler are met. If they are not met,

then optimization for performance is done. Then the timing

analysis is done again. This will continue until the timing

constraints are met. Fit-ure 46 [Ref. 15:p. 2-3] illustrates

the optimization flow in AutoLogic.

2. Optimization Algorithms

a. Peepholes

AutoLogic performs most optimization by applying

pattern rules to selected subcircuits (peepholes) of the

design. A peephole consists of a set of n source signals,

where n is the input width, and all gates and nets whose

function is related only to the source signals. Figure 47

(Ref. 15:p. 5-14] illustrates a peephole of input width two.

AutoLogic then calculates the truth table for each net in the

peephole and attempts to replace it with a more efficient

circuit from its database. [Ref. 15:pp. 5-13 - 5-14]

b. Signature Synthesis Optimization

Signature synthesis only modifies combinational

logic, no sequential cells are touched. This algorithm is

characterized as greedy because for every peephole it

evaluates, it substitutes the circuit with the lowest cost

substitution it can find. [Ref. 15:p. 5-15)
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3. Time and Area Tradeoffs

AutoLogic optimizes for performance by first

identifying the critical paths and then optimizing for

performance by balancing a gain in timing against an increase

in area. The tradeoff between timing and area is done by

minimizing cost of every subcircuit. If a substitution

reduces cost, it is made; if it increases cost, it is not

made. [Ref. 15:p. 5-17] Cost is determined by the following

equation:

Subs New Old Timing) + Maxcap)(Cost) = (Cell) - (Cell) + ( Cost " Costp"
Cost COst
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Cell cost is the sum of the cost properties of all the cells

in the subcircuit; timing cost is cost or benefit associated

with changing the timing of the circuit; maxcap cost is cost

penalty added if an output drives more than the maximum load.

(Ref. 15:p. 5-17]

D. DESIGN COMPARISONS

Table II compares area and performance of various design

modules using the Genesil standard block compiler and Logic-

Compiler (AutoLogic). For every module, the Logic-Compiler

version is faster. The table also illustrates that dramatic

improvement is possible for designs comprised of random logic

as in the case of the 16-bit conditional sum adder. Figure 48

and Figure 49 are the layouts of the 4-bit block carry

lookahead unit described in Chapter 2 using the Genesil

Standard compiler and Logic-Compiler (AutoLogic),

respectively.
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Table II. Design Comparisons

Modules Genesil Logic-
Compiler Compiler

Delay Area Delay Area
(ns) (mils2) (ns) (mil 2 )

4x4 Parallel 8.2 216 6.1 174
Multiplier

8x8 Parallel 17.2 792 10.4 1020
Multiplier

14x14 31.3 2345 16.9 5427
Multiplier

16-Bit Cond. 10.5 3724 9.7 868
Sum Adder

Half Adder 1.5 7.91 1.0 8.1
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Figure 48. 4-Dit Block Carry Lookahead Unit from

the Genesil Block Compiler
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Figure 49. 4-Sit Block Carry Lookahead Unit from

the Logic-Compiler
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APPENDIX B. DESIGN SPECIFICATIONS

A. FLOATING POINT NUMBER SYSTEMS

1. 20 bit word size (1 sign, 6 exponent, and 13
mantissa).

2. Normalized numbers only - IEEE infinity, denormalized
numbers, and NaNs are not recognized.

3. True zero is recognized by all zeros in the exponent.

4. Mantissa is in signed magnitude.

5. Exponent is in excess 25 code.

6. Smallest magnitude number: 1.00000000000002 x 2-"
= 4.65661287308.0 x 10"'0.

7. Largest magnitude number: 1.11111111111112 x 231

= 4.2947051520110 x 109.

B. ADDER AND MULTIPLIER

1. Fabrication Line: MHS CN10C.

2. Exponent overflow forces largest output (sum or
product) and is indicated with an exponent overflow
bit.

3. Exponent underflow forces largest output (sum or
product) and is indicated with an exponent underflow
bit.

4. Pipeline stages -- Multiplier: 6
Adder: 14.

5. Maximum Clock speed: 45 MHz.

6. Approximate Area (each): 10,000 mils2 .

C. RADIX-4 FFT BUTTERFLY

1. Initialization Procedure:
a) Set LOAD COUNT bit to 1.
b) Clock the circuit.
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c) Set LOAD COUNT bit to 0 and ENABLECOUNT bit to 1.

d) Circuit is ready to clock in input points.

2. Approximate Area: 200,000 mils2 .

3. Overflow and underflow is indicated if any multiplier
or adder has exponent underflow or overflow in any
stage.

4. 48 pipeline stages.

5. Maximum clock speed: 45 MHz.

6. Complex Word Format: First 20 bits - Real
Second 20 bits - Imaginary
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